Copolymerization of Styrene with N-phenylmaleimide by Rare Earth Coordination Catalysts

Yan Bing LU, Wei Lin SUN, Zhi Quan SHEN*

Institute of Polymer Science, Zhejiang University, Hangzhou 310027

Abstract: Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst $Nd(naph)_3$ -AlEt₃ in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.

Keywords: Copolymerization, styrene, N-phenylmaleimide, rare earth coordination catalyst.

Copolymers involving NPMI have stimulated great interests because the incorporation of NPMI units into thermoplastic resins may greatly improve the heat-resistance and chemical stability of the products. Free radical copolymerizations of styrene with N-phenylmaleimide have been reported in many papers^{1~4}, and the copolymerization is dominated by alternating copolymerization with the participation of monomer charge transfer complex (CTC) in both initiation and chain propagation. Shen *et al.* reported the copolymerization of styrene with maleic anhydride by rare earth coordination catalysts⁵. This paper reports the copolymerization of styrene with N-phenylmaleimide with rare earth coordination catalyst Nd(naph)₃-AlEt₃ in toluene at 50°C.

St and NPMI can not homopolymerize using the rare earth catalyst $Nd(naph)_3$ -AlEt₃ in toluene. But copolymers are obtained when St and NPMI are added into the catalyst together. The compositions of St-NPMI copolymer with various monomer feeds are listed in **Table 1**. It showed that the copolymers possess a predominantly alternating structure in a large range of the monomer feeds.

	NPMI in monomer	Yield(%)	Nitrogen	NPMI in copolymer
	(mol%)		content(%) ⁶	(mol%) ^c
1	10	22.27	4.30	40.6
2	20	39.30	4.58	44.0
3	40	58.25	4.74	46.0
4	50	55.93	4.79	46.7
5	60	52.57	4.93	48.5
6	80	30.28	5.36	54.2
7	90	14.87	5.71	59.2

Table 1 Composition of St-NPMI copolymer^a

a $[Nd(naph)_3]=5.0 \times 10^{-3}mol/L$, $[AlEt_3]=4.5 \times 10^{-2}mol/L$, $[St]+[NPMI]=8.0 \times 10^{-3}mol/L$, temperature:50°C, time: 6 h, solvent: toluene; b Measured by elemental analysis;

c Calculated based on the nitrogen content from the elemental analysis

Yan Bing LU et al.

From the ¹³C NMR spectrum of the copolymer **4** (**Figure 1**), the peak at $\delta = 138.40$ ppm is assigned to the NPMI-St-NPMI triad⁶, and the bands of NPMI-St-St + St-St-NPMI and St-St-St triads do not appear. Conclusion can be drawn that the copolymer **4** is alternating, which is coincident with **Table 1**.

The copolymers exhibit a single glass transition temperature T_g at 227°C (**Figure 2**), reflecting their relatively homogeneous molecular structure. The high T_g of the copolymer results from the five-member planar ring of the imide residues, hindering the rotation around the backbone chain of the macromolecules.

Conclusion

Copolymers of styrene and N-phenylmaleimide are obtained using rare earth coordination catalyst $Nd(naph)_3$ -AlEt₃. The copolymers obtained are predominantly alternating in structure clarified by elemental analysis and ¹³C NMR.

Acknowledgment

This project was supported by the National Natural Science Foundation of China. (No.29974024, 20254001)

References

- 1. L. E. Coleman, J. A. Conrady, J. Polym. Sci., 1959, 38, 241.
- 2. S.Iwatsuki, M. Kubo, M. Wakita, Y. Matsui, H. Kanoh, Macromolecules, 1991, 24, 5009.
- 3. T. Oishi, M. Iwahara, M. Fujimoto, *Polym. J.*, **1991**, *23*, 1409.
- 4. A. Matsumoto, T. Kubota, T. Otsu, *Macromolecules*, 1990, 23, 4508.
- 5. M. J. Yang, H. Zheng, Z. Q. Shen, Science in China, Series B, 1991, 21, 1017.
- 6. G. R. Shan, Z. X. Weng, Z. M. Huang, Z. R. Pan, J. Appli. Polym. Sci., 2000, 77, 2581.

Received 16 July, 2001 Revised 11 April, 2002

686